
JOURNAL OF COMPUTATIONAL PHYSICS 121, 238--245 (I 995)

Improvement of Efficiency in Generating Random U(1) Variables
with Boltzmann Distribution (von Mises Distribution Revisited)

TETSUYA HATTORI* AND HIDEO NAKAJIMAt

Facult3, of Engineering, Utsunom(va University, Ishii, Utsunomiya 321, Japan

Received October 1, 1992; revised October 3, 1994

A method for generating random U(1) variables with Boltzmann
distribution (i.e., realizing von Mises distribution) is presented.
Based on the rejection method, high efficiency is achieved for the
whole range of temperatures or coupling parameters, which makes
the present method especially suitable for (parallel or pipeline) vec-
tor processing machines. Results of computer runs are presented
to illustrate the efficiency. An idea to find the algorithm is presented,
which is applicable to other distributions of interest in Monte Carlo
simulations. © 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper we give an algorithm based on the rejection
method, for realizing the von Mises distribution [8; 3, Section
IX.7.3], or, equivalently, an algorithm for generating random
U(1) numbers to update a variable of a canonical ensemble in
the Monte Carlo simulation of U(1) spin systems or U(1) lattice
gauge theories. A method given by [1] has been known to be
very efficient [3, Section IX.7.3]. Our method provides an
improvement to this method.

Our method has a special feature that it has a very high
acceptance rate uni formly in the parameter of the distribution.
We also pay attention on having as few " i f -branches" (condi-
tional jumps) as possible. Interest on these points comes from
the recent activity in the study of Monte Carlo simulation for
the numerical study of quantum field theories in lattice formal-
ism and statistical mechanics of spin systems. In Monte Carlo
simulations, one generates random numbers with given proba-
bility distributions, to "upda t e " a spin or a gauge variable.
Probability distributions have parameters, which carry the infor-
mation of the neighboring spin states. We have fluctuations in
the neighboring spins, resulting in the changes of the parameters
within a single program. One faces the problem of finding an
algorithm which maintains uniformly high efficiency as one
varies the parameters. As far as we know, currently available
(parallel or pipeline) vector processors work efficiently when

* E-mail address: hattori@tansei.cc.u-tokyo.ac.jp.
t E-mail address: nakajima@kinu.infor.utsunomiya-u.ac.jp.

0021-9991195 $12.00
Copyright © 1995 by Academic Press, Inc.
All fights of reproduction in any form reserved.

there are no " i f -branches" in the program; hence we are also
interested in reducing the " i f -branches."

We aim at giving a practical method, with support of rigorous
proofs. We set up the problem in Section 2, formulate our
strategy and give a practical solution in Section 3 and Section
4, respectively, with proofs in Appendix A, and give discussions
in Section 5. An example of a program for our proposal is in
Appendix B.

2. RANDOM U(1) VARIABLE AND REJECTION METHOD

A random U(1) variable (a realization of von Mises distribu-
tion) is a sequence of numbers (the angle variables)

01, 02, 03 (1)

whose distribution P([0, 0 + dO]) = f,(O) dO is given by the
density function fu(0) = N~ exp(a cos(0 - 00)), where N, is a
normalization constant. By a shift of variable 0' = 0 - 00 if
a > 0, and 0' = 0 - 00 - 7r if a < 0, we may assume withhout
loss of generality that 00 = 0 and a >- 0. Hence

f~(O) = N~ exp(a cos 0), - r r --< 0 < rr, a > O,

No = ~ exp(a cos O) dO = 2rr Io(a). (2)

lo(a) is the zeroth modified Bessel function of the first kind.
The inversion method has been unsuccessful for generating

the random U(1) variable, and the rejection method [3, Section
I1.3; 10; 2] is adopted to solve the problem [3, Section IX.7.3].
Letj~0) be some approximate, normalized, density function to
f,(0). Suppose that there is a monotone function h which satisfies
h(0) = - r r , h(1) = rr, and

f (h (x)) --~ (x) = 1, 0 < x < 1. (3)

(For the moment, we suppress possible parameter dependences
of f and h.) Define a function g by

238

GENERATING RANDOM U(I) VARIABLES 239

d h
g(x) = R(a) f~(h(x))f(h(x)) -- R(a)f~(h(x)) -~ (x),

R(a) = min ~ - - . .
-~<_o<~ LL(O)J

0 - - < x < 1, (4)

(5) ~9~.~ =

Let oJ i and co; wi th j = 1, 2, 3 be two sequences of indepen-
dent uniform random variables with the probability distribution
P([co, co + do]) = doJ, 0 -< oJ < 1. Define a subsequence
~i = c%, i = 1, 2, 3 of the sequence {coj} by selecting
the numbers j = ji that satisfy o9; --- g(o;). Then the sequence
h (~) , h(~,), h(~3) is the random U(1) variable. We call
the rate of picking up ~ out of oJj the acceptance rate, which
is equal to R(a) in Eq. (5) [3, Section IE3.1]. fandf, are non-
negative and normalized; hence 0 <-- R(a) <- 1.

To illustrate the problem, recall first the simplest choice of
J~ the uniform distribution [l l] ; .y(0) = 1/2rr, h(x) = (2x -
l)~r. Hereafter, we refer to this choice as the "di rec t" method.
The acceptance rate is R(a) = exp(-a)lo(a), which is small for
a >> 1 [1]; R(a) ~ (2ffa) -t/2. In particular, inf,,>0 R(a) = 0: For
large a the original distribution f , has a large peak at 0 = 0,
and the uniform distribution f i s not a good approximation [1].
We need to find a f which is a good approximation to the
original distribution f, for all values of a, or equivalently, such
Tthat g is almost flat. In a sense, this is to find a family of
distributions which interpolates the uniform distribution (a =
0) and the delta function distribution (a = oo) expressible as
a simple computer program.

A standard criterion for the choice o f f is [1 ; 3, Section II.3.1]
that (i) it is easy to calculate h; (ii) R(a) is large; and (iii) it is
easy to calculate g(x). As stated in Section l, we here add that
(iv) inL>0 R(a) is large (uniformly high efficiency) and (v) "if-
branches" are avoided. Also, we take into account the recent
trends that many computers are equipped with co-processors
which quickly calculate elementary functions such as tan x,
exp x, and their inverse functions• This last point seems to be
a standard assumption [3, Section I.l, Assumption 3].

3. A P P R O X I M A T E DISTRIBUTIONS AND THE
OPTIMIZATION OF THE A C C E P T A N C E RATE

The density functionf, is an even function which has a sharp
peak at 0 = 0 for large a. We require tha t f i s an even function
which has two free parameters, one to adjust the sharp peak
at 0 ~ 0 and one to adjust off-peak behavior, and that the
corresponding function h in Eq. (3) has an analytic expression.
The simplest choice satisfying these conditions is

/Qa,t3
f~.o(0) = 2 cosh(ot0) + 2/3' ot > 0,/3 > - 1,

where bT~.~ is a normalization constant;

V/3 ~-- 1
a B > l ,

2 arc tanh(AB)'

1
o ~ , / 3 = 1 ,

V1 -/3'-
oL 2 arc tan(AB)' - 1 < /3 < l,

(6)

with A = tanh (trod2), and B = %/]/3 - 1]/(/3 + 1). The corre-
sponding function h in Eq. (3) is

h~.t~(x) =

2o~ -~ arc tanh(B -n tanh((2x - 1) arc tanh(AB))),
/ 3 > 1 ,

2a -~ arc tanh((2x - 1)A),
/ 3 = I ,

2oz -~ arc tanh(B -t tan((2x - 1) arc tan(AB))),

- 1 < / 3 < 1 .

(7)

The next step is to choose o~ = or(a) and/3 =/3(a) as functions
of a. In principle, they should be chosen so as to optimize the
acceptance rate R = R(a). Here, we search for a solution that
satisfies a condition that the minimum in the definition of R(a)
(i.e., in the right-hand side of Eq. (5)) is achieved at 0 = 0. We
impose this condition to avoid "if-branches" in the resulting
computer program. We have an argument that the optimal solu-
tion under this condition, which we shall refer to as the "opti-
mized cosh" method, is given by choosing o~ = c~(a) and 13 =
/3(a) in Eq. (7) to satisfy

o t (a) = ~ - 1,

1
/ 3 (a) = 2 - - - , i fa>--a °,

a

cosh(n 'o4a)) - 1 _ e x p (2 a) - 1

(8)

o r (a) 2 a '

o4a) 2
/ 3 (a) = - - - 1, i fa ° > a - > a * . (9)

Here a ° and a* are positive constants satisfying a ° > a*,
uniquely determined by

exp(2a °) - l _ c o s h (~ 3N/~a ° - 1) - 1
a o

exp(2a*) - 1 _ ff_~2
a* 2

3a ° - 1
(10)

(l l)

Numerically, a* ~ 0.79895368608398 and a °
5.0422719051807. The function g = g, in Eq. (4) is, for a --> a*,

240 HATTORI AND NAKAJIMA

g.(x) = e x p (- aGo(h.~.,.~.l(x))) (12)

with

G , (0) = l - c o s 0 - 1 1 o g (l + - -
1

(cosh(ot (a)0) - l) / .
1 + / 3 (a) /

For the parameter range of 0 < a < a*, we have to take a
limit o~ ,1. 0 with a(a)2/(l + /3(a)) fixed to 27r-2(exp(2a) -
1). We have, in place of Eq. (7),

1
h~(x) = -- tan((2x - 1) arc tan(n'y)),

Y

where y = y(a) is

y(a) = ~-I~/exp(2a) - 1, i f0 < a < a*. (15)

The function g = go in Eq. (4) is

go(x) = exp(-aG~(hr~,~(x)))

The acceptance rate for the "opt imized cosh" method keeps
more than 0.9 for all values of a (Fig. 1). The infimum of R(a)
is attained at a ~ 1.95292714301 with the value inf,>0
R(a) -~ 0.905563958.

with

4. P R O P O S E D A L G O R I T H M

(13) The acceptance rate for the "opt imized cosh" method is
high, but to obtain the parameter or(a) for a* -< a < a °, one
has to solve a transcendent equation Eq. (9). Also, one has to
use different formulae for 0 < a < a*, a* ~ a < a °, and a ° <
a, which will cause " i f -branches" that will lower the efficiency
when using with vectorized processors.

One may, for example, use the Newton method to solve (14)
equations numerically, but here instead we approximate the
function a(a) in Eq. (9) directly by a function which is explicitly
expressible on computer programs without using if-branches
for all a and is designed to keep high acceptance rate. The if-
branches are avoided in such a way that we have - 1 < / 3 < 1
for all a E (0, oo). We give an example of a practical algorithm:

(16)

1. Define or(a) by

a2(a) = min{a(2 - e),

max{ea, 0.4162(a - a*) 2 + 1.5056(a - a*)}},

G.(O) = 1 - c o s 0 - 1 l o g (1 + y(a)202). (1 7)
O

The distribution is reduced to the Cauchy distribution:

f~(O) = 1 + y202' A/r = 2 arc tan(try)" (18)

See Appendix A for the proof that these formulae correctly
generate a random U(1) variable, and arguments for our choice
of the parameters.

The acceptance rate R = R(a) for the "opt imized cosh"
method is given by

where e = 1 0 -3 and a* is the value given below Eq. (1 I), and
also define/3(a) by

a max p(2) - 1 - 1,

where

coshOrV~)- 1
Q ~ - , e , = a * e (1 + e) .

2E: a

2. Define functions h~.0 and g. by

R(a) = N~ta},lJt~l a >-- a*,
2Naexp(a)(1 + /3(a)) '

y(a)

2Noexp(a)arc tan(~y(a)) '
a * > a > 0 ,

where No and N~,~ are defined in Eq. (2) and Eq. (6), respectively.
Note the high acceptance rate for both small a and large a:

R(a) ~ l - l a + l-~O a2, a , ~ l ,

R(a)--~ 2 log(2 + V~) ~ 0.95167365657, a ~ oo.

tanh(c~h~,~(x)/2) = V'(1 +/3)/(1 - / 3)

tan ((2 x - 1) a r c tan (~¢ / (1- /3) / (1 + / 3) t a n h 2))

and

g~(x) = exp(a cos h~,l.~l(x) - a)

1 - / 3 (a) tanh2 (°t(a)) 1 + 1 ~/3(a) --T-hm.),a~.)(x)

o4a) 1-tanh2(--ff-h~),O~a,(X))

GENERATING RANDOM U(I) VARIABLES 241

r r

- ' - . ~ I I I I I I I I t I

.....
"..,.

-...,..

" . , ,

•
.....

-.....
...,...

• . . . , .
.....

I I I

1
a

o p t i m i z e d - c o s h
p r o p o s e d - c o s h - -

B e s t - F i s h e r
d i r e c t

".....

I I I I I I I

5 10 i n I

FIG. 1. Acceptance rate R(a).

3. Let % and col with j = 1, 2, 3 be two sequences of
independent random variables uniformly distributed in [0, 1).
Define a subsequence

6 J i = % , i = 1 ,2 ,3

of the sequence {%} by selecting the numbers j = ji that satisfy
~; <- g,,(o~j).

The sequence ha~,~.t~,,)(~o~), h,~(al.ijla~(ffJ2), h~,la~.t~a)(ffJ3) is the
random U(1) variable.

We will refer to this choice as the "proposed cosh" method.
One can explicitly check that the conditions of the Proposition
in Appendix A, or the alternative conditions in the remark to
the proposition, hold with this choice of parameters, which
implies that the "proposed cosh" method correctly generates
random U(1) variables. The acceptance rate R (a) is greater than
0.9 for a --< 8.5, decreasing for larger a, and the infimum is
attained at a = oo (Fig. 1). We have

infR(a) = R(oo) = ~ 0.8861530627.
~>0 4 arc tanV'-~(2 - e)

5. EFFICIENCY TEST AND CONCLUDING REMARKS

The Bes t -Fisher ' s method [1] uses the rejection method,
where the approximate distributionfis the wrapped Cauchy dis-
tribution:

1 ~/1 + 4T(a) 2
f (O) = 2n" 1 + 2T(a)2(l - cos 0)'

T(a) 2 = 4-~(-1 + 2a + N/1 + 4a2).

(We changed the parametrization from [1] to show correspon-
dence with Eq. (18).) The acceptance rate R(a) is

1 ea X/1 + 4y(a) 2
R(a) = ~ ~ ,

exp(a)N, 4try(a)- exp(-a/(2"y(a)-))

where No is as in Eq. (2). In particular, R(oo) = ~
0.657744623. This method is faster than the "d i rec t" method
for a l l a > 0 [1] .

Before going into the comparison with our method, we would
like to refer to two other methods in the recent literature, both
of which are based on the rejection method, but use different
approximate distributions f.

The approximate distribution adopted in [9] is

 exp(o(, 2,o,))
where A/, is a normalization constant. The acceptance rate R(a)

for this choice is

242 HATTORI AND NAKAJIMA

R(a) = - -
1 a e x p (- c a)

N, exp(a) zr(1 - e x p (- 2 a)) '

c = - arc sin + ~/1 - (2/rr)-' - 1,
ff

where N,, is as in Eq. (2). R(a) is high for a --< 1, but for
large a, we have R(a) -~ ~ exp(-ca) , which rapidly
approaches 0 as a --~ oo. Therefore this choice suffers from
the same problem as "direct" method that the time necessary
to generate a random number indefinitely increases as a
oo. (In fact, we checked that the "proposed cosh" method
is faster for a > 3.)

The approximate distribution adopted in the study of [4] is
the Gaussian distribution

f(O) = 1Cl,, exp(-a(a)02),

where a(a) = 27r -2 max (a, 4-~). (To be precise, the "di rec t"
method is adopted for a < 1.5 and the Gaussian distribution
for a > 1.5 in [4]. We focus our attention on a > 1.5, where
the "direct" method is not effective.) For the algorithm of
generating the Gaussian random variable, [4] quotes [7]. The
original distribution f,(O) is now considered as a distribution
on 0 E R, withf~(0) = 0 if [0[> zr. The acceptance rate R(a)
is [41

R(a) - 1 ~ .
N,, exp(a)

The acceptance rate for the Best-Fisher method is larger than
this value for all a > 0. The method of [4] is very efficient,
but by comparing the actual speed in producing one random
number, we found that the Best-Fisher method is 1.3 times
faster than the method of [4] for all a > 0. The long known
Best-Fisher method is very efficient because it has relatively
high efficiency with simple program.

Let us now compare our method with the Best-Fisher
method. As noted in the introduction, our interest is the effi-
ciency when used on vector processors, and without "if-
branches" (conditional jumps). In the rejection method, one
usually repeats the acceptance trial until acceptance occurs
where one obtains a random variable. This procedure causes
"if-branches."

In the Monte Carlo simulation of statistical systems (where
one performs multi-dimensional integration numerically) com-
bined with the rejection method [10], one may make a fixed
number n of rejection trials for each spin variable (each degree
of freedom) and go to next variable whether or not acceptance
has occurred [5]. Let us call this set o fn trials, an update. Trying
an update with n trials effectively improves the acceptance rate
R to R, = 1 - (1 - R)". One is then interested in the speed
to keep R, above some fixed high value, say R, > 0.9. Note

that in this approach "if-branches" are avoided. This approach
has been widely adopted in Monte-Carlo simulations of statisti-
cal systems.

Based on this approach, we performed efficiency test compar-
ison of the Best-Fisher and the "proposed-cosh" method, with
HITACH $3800 in Computer Centre of University of Tokyo
which uses a pipelined vector processor. We measured the
efficiency by the average VPU (vector processing unit) time
consumption for an update, with iteration number n so chosen
that for given b, R,, > 0.9 in the range 1 < a < b. The average
is taken over 4 x 106 updates. The measured acceptance rates
for each a were in good agreement with the theoretical predic-
tions in Section 3 and in Fig. 1 (within 0.1% accuracy). We
found that for uniformly distributed a in the range 1 < a <
8, the "proposed cosh" method is 1.2 times faster than the
Best-Fisher method. The acceptance rate for the "proposed
cosh" method is very high, uniformly in a, which makes this
method efficient.

The consideration given in Section 3 implies that the use of
the " c o s h " distribution will be efficient for generating random
variables taking values in a finite interval (e.g., [-zr, 7r]) and
whose distribution f,(O) is an even function with maximum at
0 = 0, and behaves likef,(0) -~ const - aO 2 near 0 = 0, with
a parameter a > 0 that controls the sharpness of the peak.
This is a common feature of weight functions for statistical
mechanical systems with one component spins and link vari-
ables. We have seen that the method is particularly suitable
for vector processors, equipped with coprocessors for floating-
point calculations.

Note, however, that the speed of an algorithm may depend
on the situation, whether the parameter a is fixed or varying,
range or value of a, and what kind of processor is used. For
example, our method, as well as all the other methods discussed
above, considers the case where a varies. For fixed a, there
may be faster methods.

APPENDIX A

In this appendix, we give a proof that the "optimal cosh"
method in Section 3 correctly gives the random U(1)-vari-
ables, and also we give the argument for the choice of the para-
meters.

We consider the case a > a*. The proof for the case 0 <
a --< a* is similar. By explicit calculation, one sees that h~,~ of
Eq. (7) satisfies Eq. (3). Therefore it suffices to show that Eq.
(12) satisfies Eq. (4) with Eq. (5). Define,

 y(o)io(oq
G(O) = la log]_f--~ ~-~-~ J (19)

= 1 - c o s O - 1 1 o g (1 - - ~ (c o s h (a O) + / 3)) . (20)

GENERATING RANDOM U(1) VARIABLES 243

(G depends on three free parameters a, a, and/3. We suppress
the parameter dependences for the moment.) Then Eq. (4) and
Eq. (5) imply

g (x) = e x p { - a (G (h (x)) - 0~t-~.~lmin G(0))} (21)

D = D I UD2,

D~ ~ {(a, o~,/3) E (0, o~)-' X (- 1 , oo) I a2(2 - / 3)

>/3 + 1 > o¢21a},

D2 =- {(a,a,/3) ~ (0, oo)2 × (_1 , ~) [a 2

= 3 a - 1 = a (/ 3 + 1) , a > 3 / 2 } .

and

37(0) e x p { a min G(O)}.
R(a) - N,, exp(a--~ 0El-~.~l

Comparing Eq. (21) with Eq. (12), one sees that the results in
Section 3 are correct if

rain G(O) = 0. (22)
eel-Tr,a']

PROPOSmON. Let a > O, a > O, and/3 > - 1. If G satisfies
the three conditions

1 O~ 2
G"(0) = I - - >- 0, (23)

a l + / 3

G~4'(0) = - 1 1 o?(/3 - 2)
a +737 _ o ,

(cosh(zro0 +/3) __ o,
G (r r) = 2 - l o g \ 1 + / 3

then G satisfies

G(x)>-O, -Tr<-x<-Tr. (26)

Assume for the moment that this proposition is true. It is
easy to see by explicit calculations that a = a(a) and /3 =
/3(a) defined by Eq. (8) or Eq. (9) satisfy the conditions (23),
(24), and (25), and a(a) > 0 and/3(a) > - 1 , for all a > a*.
Since G(0) = 0, the proposition implies that Eq. (22) is satisfied
for all a > a*.

It remains to prove the proposition. Since G is an even
function, it is sufficient to prove G(x) >- 0 for 0 -< x <- 7r.

The conditions (23) and (24) imply that a2(2 - /3) ->/3 +
1. The equality holds if and only if a(/3 + 1) = ot 2 and ot 2 =
3a - 1, which, with (25) implies (3a - 1)(exp(2a) - 1) -->
a(cosh(TrV~a - 1) - 1). This is equivalent to a > a ° (>za-),
where a ° is defined by Eq. (10). Therefore, if we define a set
D by

it is sufficient to prove that for all (a, a,/3) ~ D and 0 -< x
rr, (25) implies G(x) >- O.

Step 1. Fix (a, a , /3) E D. Put g(x) m G'(x). (This g has
nothing to do with g in Eq. (21).) Then we have

f (x) =-- g(x) + g"(x)

c~ 5 sinh(~_~)
a(/3 + cosh(oa')) ~

h(a-2(cosh(ocO - 1)),
(27)

where

h(y) =- _y2 + (/3 _ 2a 2(/3 + 1))3' + a-4(/3 + 1)

(a-'(2 - / 3) - (/3 + 1)).

Since (a, a, /3) E D, we see that there exists one and only one
(24) positive root 3' = 3'0 o f h (y) = 0 and that h(y) > 0, i f 0 <

Y < Y0, and h(y) < 0, if3' > yo. Therefore if we let x = xo to
be the unique positive solution to the equation o~-2(cosh(oc~) -

(25) 1) = Y0, we have

f (x) > 0 , i f 0 < x < x 0 , (28)

f (x) < 0, ifx > xo. (29)

Note that g(0) = 0 and g'(0) -> 0 if (a, a, /3) E D. With
Eq. (27) and Eq. (28) we conclude that

g(x) > 0, i f0 <x- -<xo ;0 < x < lr. (30)

(The conclusion may be easily understood if one notes that Eq.
(27) is an equation of motion of harmonic oscillation with
external force f)

Equations (27), (29), (30) imply

G ' (x) = g (x) > O , i f O < x < - x o ; O < x < r r . (31)

g(x) + g"(x) < 0, ifx > xo. (32)

244 HATTORI AND NAKAJIMA

Step 2. Fix oe > 0 and t ~- aot-2(/3 + 1) --> 1, and let a
vary with the restriction (a, or,/3) E D. The allowed region of
a differs by the values of t and a:

1. t > 1, or t = I and ce -< 7X/'~. In this case, (a, a , /3)
D is equivalent to a > (or 2 + 1)/3.

2. t = 1 and a > 7 V ' ~ . In this case, (a, ol, /3) E D is
equivalent to a -> (oe-' + 1)/3.

Note that g(x) = go(x) is continuous (uniformly continuous
on compact sets in (0, rr] w.r.t, x) and increasing in a, and x0
= xo(a) is continuous in a. Also, lim,_~ g(x) = sin x, uniformly
on compact sets in (0, rr].

We claim that for every a (such that (a, a , /3) E D), and for
any x, and x3 satisfying g°(x,) > 0, g.(x3) > 0, and 0 < x, <
x3 --< ~', we have g.(x) > O, x E [x, x3]. Assume this is wrong;
assume that for a = ao and 0 < x~ < x2 < x3 --< 7r we have
g.o(XO > M, g.,(x2) --< 0, and g%(x3) > M, where M is a positive
constant. Since g.(x) is increasing in a, we have

g~(xl) > M, ga(x3) > M, a --> a0.

Put

q(a) =- min gJx).
.r i ---.t ~ .~ 3

Then q(a) is continuous in a and l im, ,~ q(a) > 0. Therefore
there exists a, -> a0 such that q(a~) = O, which further implies
that g.,(x) >-- 0, x, <- x --< x3, and that there exists x4 satisfying
x, < x4 < x3 and g.,(x4) = 0. In particular, g,,(x4) = 0 and
g',(x4) -> 0 hold, which contradicts Eq. (31) and Eq. (32). Hence
the claim is proved.

Step 3. Fix (a, a , / 3) E D. The claim and Eq. (31) imply
that either g(x) = G'(x) > 0 for 0 < x < rr, or there exists x '
such that 0 < x' < rr, and g(x) > 0 for 0 < x < x ' , and
g(x) < 0 for x ' < x ----- ~'. Hence G(x) is either increasing in
0 < x < rr or has just one peak and no valley. Since G(0) =
0 and G@') -> 0, we have G(x) > 0, 0 < x < rr. This completes
the proof.

Remark. It is easy to see that the above proof holds also
if the conditions (23) and (24) are replaced by G"(0) > 0 and

/3<0.

We now turn to the argument for the choice of the parameters.
We want to choose the parameters so that the acceptance rate
is large. As stated at the end of Section 2, we want a fiat g(x);
hence we require G"(0) --- 0. We impose the condition that the
minimum of R(a) is achieved at 0 = 0, which is equivalent to
assuming Eq. (26). As a necessary condition, we have G(4)(0)

--> 0 and G(rr) -> 0. (By the proposition, we know that these
are sufficient to ensure Eq. (26).) As we want to have flat G(x),
it should be best to have either Gt4)(0) = 0 or G(Tr) - 0. If
one draws a graph of these three conditions, in (or,/3)-plane,

one easily sees that the choice given in the Section 3 is the
one that we are looking for.

APPENDIX B

SUBROUTINE UIRND(A,H)
C A sample FORTRAN program for generating a random U(1) variable

C using the proposed cosh method.
C The first argument A is the parameger in the distribution.
C The second argument N returns a random U(1) variable when
C UIRND is called. A uniform [0,I) source (random variable) RND

C is assumed and called twice.
REAL A,AS,ALPH2A,ALPHA,B1,EPS,G,H,N1,P1,P2,PI,QB
PARAMETER (PI=SNGL(3.14159265358979323846))

PARAMETER (AS=SNGL(O.79895368608398))
PARAMETER (PI=0.4162, P2=l.fi086)
PARAMETER (EPS=O.O01)

C Correspondence of variables with the texg (see Secgion 4):
C AS=a*, Pl=pl, P2=p2, EPS=epsilon,
C ALPH2A=alpha**2/a, Bl=sqrg((l-bega)/(1+beta)), ALPHA=alpha,
C Hl=ganh(h(omega)*alpha/2), H=h(omega)=random U(1) variable,
C G=g_a(omega), RND=omega and omega'.
C QB is a consgant which should actually be calculated at
C the beginning of ghe program, not in the subroutine.
C COSH, SQRT, EXP, MIN, MAX, ATAN, TANH, TAN, LOG, COS are
C sgandard intrinsic funcg±ons.
C (The program used go test the efficiency in Section 5 is
C slightly involved than this sample program, to make it
C efficient for vector processors.)

QB=(COSN(SQRT(AS*(I+EPS)*EPS)*PI)-IdO)/AS/(I+EPS)/EPS/2
ALPH2A=MIM(2-EPS, MAX(EPS, (PI*(A-AS)+P2)*(A-AS)/A))
BI=SQRT(MIM(2, (EXP(2*A)-I)/A/QB)/ALPN2A-I)
ALPHA=SQRT(ALPH2A*A)

1 CONTINUE
BI=TAM((2*RMD-1)*ATAN(TANB(PI*ALPNA/2)*B1))/BI
B=LOG((I+H1)/(1-HI))/ALPHA
G=EXP(A*(COS(H)-I))*(I+(BI*HI)**2)/(I-HI**2)
IF (G .LT. RND) GOTO 1
RETURN
END

ACKNOWLEDGMENTS

We thank Professor Y. Oyanagi for very helpful discussions and encourage-
ments. We also greatly thank Professor M. Sibuya, Professor A. D. Sokal, and
the first referee, for comments which were instructive, especially in revising
Section 5. The references have been updated (which also led to revising Sec-
tions 1, 2, and 5) with the kind help of Professor M. Fushimi, Professor H.
Sakasegawa, Professor M. Sibuya, Professor A. D. Sokal, and the two ref-
erees, whom we also thank. The research of T. Hattori is supported in part
by a Grant-in-Aid for General Scientific Research from the Ministry of Ed-
ucation, Science and Culture.

REFERENCES

1. D. J. Best and N. I. Fisher, AppL Statist. 28, 152 (1979).

2. J. W. Butler, in Symposium on Monte Carlo Methods, edited by H. A.
Meyer (Wiley, New York, 1956).

3. L. Devroye, Non-uniform Random Variate Generation (Springer-Verlag,
New York, 1986).

4. R. G. Edwards, J. Goodman, and A. D. Sokal, Nucl. Phys. B 354, 289
(1991).

GENERATING RANDOM U(I) VARIABLES 245

5. K. Fredenhagen and M. Marcu, Phys. Lett. B 193, 486 (1987).

6. M. Fushimi, Random Variables (Tokyo Univ. Press, Tokyo, 1989). [Jap-
anese]

7. D.E. Knuth, The art of computer programming, Vol. 11, 2nd ed. (Addison-
Wesley, Reading, MA, 1981).

8. K. V. Mardia, J. R. Statist. Soc. B 37, 349 (1975).

9. K. J. Moriarty, Phys. Rev. D 25, 2185 (1982).

10. J. yon Neumann, Nat. Bur. Stand. Appl. Math. 12, 36 (1951).

11. M.J. Seigerstetter, discussion (pp. 411-412) of D. G. Kendall, J. R. Statist.
Soc. B 36, 365 (1974).

12. T. Tsuda, Monte Carlo Methods and Simulation (Baihuukan, Tokyo.
1969). [Japanese]

