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A method for generating random U(1) variables with Boltzmann 
distribution (i.e., realizing von Mises distribution) is presented. 
Based on the rejection method, high efficiency is achieved for the 
whole range of temperatures or coupling parameters, which makes 
the present method especially suitable for (parallel or pipeline) vec- 
tor processing machines. Results of computer runs are presented 
to illustrate the efficiency. An idea to find the algorithm is presented, 
which is applicable to other distributions of interest in Monte Carlo 
simulations. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we give an algorithm based on the rejection 
method, for realizing the von Mises distribution [8; 3, Section 
IX.7.3], or, equivalently, an algorithm for generating random 
U(1) numbers to update a variable of  a canonical ensemble in 
the Monte Carlo simulation of U(1) spin systems or U( 1 ) lattice 
gauge theories. A method given by [1] has been known to be 
very efficient [3, Section IX.7.3]. Our method provides an 
improvement to this method. 

Our method has a special feature that it has a very high 
acceptance rate uni formly in the parameter of  the distribution. 
We also pay attention on having as few " i f -branches"  (condi- 
tional jumps) as possible. Interest on these points comes from 
the recent activity in the study of  Monte Carlo simulation for 
the numerical study of  quantum field theories in lattice formal- 
ism and statistical mechanics of  spin systems. In Monte Carlo 
simulations, one generates random numbers with given proba- 
bility distributions, to "upda t e "  a spin or a gauge variable. 
Probability distributions have parameters, which carry the infor- 
mation of the neighboring spin states. We have fluctuations in 
the neighboring spins, resulting in the changes of  the parameters 
within a single program. One faces the problem of finding an 
algorithm which maintains uniformly high efficiency as one 
varies the parameters. As far as we know, currently available 
(parallel or pipeline) vector processors work efficiently when 
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there are no " i f -branches"  in the program; hence we are also 
interested in reducing the " i f -branches."  

We aim at giving a practical method, with support of  rigorous 
proofs. We set up the problem in Section 2, formulate our 
strategy and give a practical solution in Section 3 and Section 
4, respectively, with proofs in Appendix A, and give discussions 
in Section 5. An example of  a program for our proposal is in 
Appendix B. 

2. RANDOM U(1) VARIABLE AND REJECTION METHOD 

A random U(1) variable (a realization of von Mises distribu- 
tion) is a sequence of numbers (the angle variables) 

01, 02, 03 . . . . .  (1) 

whose distribution P([0, 0 + dO]) = f,(O) dO is given by the 
density function fu(0) = N~ exp(a cos(0 - 00)), where N, is a 
normalization constant. By a shift of  variable 0' = 0 - 00 if 
a > 0, and 0' = 0 - 00 - 7r if a < 0, we may assume withhout 
loss of  generality that 00 = 0 and a >- 0. Hence 

f~(O) = N~ exp(a cos 0), - r r  --< 0 < rr, a > O, 

No = ~ exp(a cos O) dO = 2rr Io(a). (2) 

lo(a) is the zeroth modified Bessel function of the first kind. 
The inversion method has been unsuccessful for generating 

the random U(1) variable, and the rejection method [3, Section 
I1.3; 10; 2] is adopted to solve the problem [3, Section IX.7.3]. 
Letj~0) be some approximate, normalized, density function to 
f,(0). Suppose that there is a monotone function h which satisfies 
h(0) = - r r ,  h(1) = rr, and 

f ( h ( x ) )  --~ (x) = 1, 0 < x < 1. (3) 

(For the moment,  we suppress possible parameter dependences 
of  f and h.) Define a function g by 
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d h  
g(x) = R(a) f~(h(x))f(h(x)) -- R(a)f~(h(x)) -~ (x), 

R(a) = min ~ - - . .  
-~<_o<~ LL(O)J 

0 - - < x <  1, (4) 

(5) ~9~.~ = 

Let oJ i and co; wi th j  = 1, 2, 3 ..... be two sequences of  indepen- 
dent uniform random variables with the probability distribution 
P([co, co + do])  = doJ, 0 -< oJ < 1. Define a subsequence 
~i = c%, i = 1, 2, 3 . . . . .  of  the sequence {coj} by selecting 
the numbers j = ji that satisfy o9; --- g(o;). Then the sequence 
h (~) ,  h(~,), h(~3) . . . . .  is the random U(1) variable. We call 
the rate of  picking up ~ out of  oJj the acceptance rate, which 
is equal to R(a) in Eq. (5) [3, Section IE3.1]. fandf,  are non- 
negative and normalized; hence 0 <-- R(a) <- 1. 

To illustrate the problem, recall first the simplest choice of 
J~ the uniform distribution [ l l ] ; .y(0)  = 1/2rr, h(x) = (2x - 
l)~r. Hereafter, we refer to this choice as the "di rec t"  method. 
The acceptance rate is R(a) = exp(-a)lo(a), which is small for 
a >> 1 [1]; R(a) ~ (2ffa) -t/2. In particular, inf,,>0 R(a) = 0: For 
large a the original distribution f ,  has a large peak at 0 = 0, 
and the uniform distribution f i s  not a good approximation [1]. 
We need to find a f which is a good approximation to the 
original distribution f,  for all values of  a, or equivalently, such 
Tthat  g is almost flat. In a sense, this is to find a family of 
distributions which interpolates the uniform distribution (a = 
0) and the delta function distribution (a = oo) expressible as 
a simple computer program. 

A standard criterion for the choice o f f  is [ 1 ; 3, Section II.3.1 ] 
that (i) it is easy to calculate h; (ii) R(a) is large; and (iii) it is 
easy to calculate g(x). As stated in Section l, we here add that 
(iv) inL>0 R(a) is large (uniformly high efficiency) and (v) "if-  
branches" are avoided. Also, we take into account the recent 
trends that many computers are equipped with co-processors 
which quickly calculate elementary functions such as tan x, 
exp x, and their inverse functions• This last point seems to be 
a standard assumption [3, Section I.l,  Assumption 3]. 

3. A P P R O X I M A T E  DISTRIBUTIONS AND THE 
OPTIMIZATION OF THE A C C E P T A N C E  RATE 

The density functionf,  is an even function which has a sharp 
peak at 0 = 0 for large a. We require tha t f i s  an even function 
which has two free parameters, one to adjust the sharp peak 
at 0 ~ 0 and one to adjust off-peak behavior, and that the 
corresponding function h in Eq. (3) has an analytic expression. 
The simplest choice satisfying these conditions is 

/Qa,t3 
f~.o(0) = 2 cosh(ot0) + 2/3' ot > 0,/3 > - 1, 

where bT~.~ is a normalization constant; 

V/3 ~-- 1 
a B > l ,  

2 arc tanh(AB)' 

1 
o ~ ,  / 3 = 1 ,  

V1 -/3'- 
oL 2 arc tan(AB)' - 1 < /3  < l, 

(6) 

with A = tanh (trod2), and B = %/]/3 - 1]/(/3 + 1). The corre- 
sponding function h in Eq. (3) is 

h~.t~(x ) = 

2o~ -~ arc tanh(B -n tanh((2x - 1) arc tanh(AB))), 
/ 3 > 1 ,  

2a  -~ arc tanh((2x - 1)A), 
/ 3 = I ,  

2oz -~ arc tanh(B -t tan((2x - 1) arc tan(AB))), 

- 1 < / 3 < 1 .  

(7) 

The next step is to choose o~ = or(a) and/3 =/3(a) as functions 
of a. In principle, they should be chosen so as to optimize the 
acceptance rate R = R(a). Here, we search for a solution that 
satisfies a condition that the minimum in the definition of R(a) 
(i.e., in the right-hand side of Eq. (5)) is achieved at 0 = 0. We 
impose this condition to avoid "if-branches" in the resulting 
computer program. We have an argument that the optimal solu- 
tion under this condition, which we shall refer to as the "opti- 
mized cosh" method, is given by choosing o~ = c~(a) and 13 = 
/3(a) in Eq. (7) to satisfy 

o t ( a ) = ~ -  1, 

1 
/ 3 ( a ) = 2 - - - ,  i fa>--a  °, 

a 

cosh(n 'o4a)) -  1 _ e x p ( 2 a ) -  1 

(8) 

o r ( a )  2 a ' 

o4a) 2 
/ 3 ( a ) = - - -  1, i fa  ° > a - > a * .  (9) 

Here a ° and a* are positive constants satisfying a ° > a*, 
uniquely determined by 

exp(2a ° ) -  l _ c o s h ( ~  3N/~a ° -  1 ) -  1 
a o 

exp(2a*) - 1 _ ff_~2 
a* 2 

3a ° -  1 
(10) 

( l l )  

Numerically, a* ~ 0.79895368608398 and a ° 
5.0422719051807. The function g = g, in Eq. (4) is, for a --> a*, 
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g.(x) = e x p ( -  aGo( h.~.,.~.l(x) ) ) (12) 

with 

G , ( 0 ) = l - c o s 0 - 1 1 o g ( l  + - -  
1 

(cosh(ot (a)0) -  l ) / .  
1 + / 3 ( a )  / 

For the parameter range of 0 < a < a*, we have to take a 
limit o~ ,1. 0 with a(a)2/(l + /3(a)) fixed to 27r-2(exp(2a) - 
1). We have, in place of  Eq. (7), 

1 
h~(x) = -- tan((2x - 1 ) arc tan(n'y)), 

Y 

where y = y(a) is 

y(a)  = ~-I~/exp(2a)  - 1, i f0  < a < a*. (15) 

The function g = go in Eq. (4) is 

go(x) = exp(-aG~(hr~,~(x))) 

The acceptance rate for the "opt imized cosh"  method keeps 
more than 0.9 for all values of  a (Fig. 1). The infimum of R(a) 
is attained at a ~ 1.95292714301 with the value inf,>0 
R(a) -~ 0.905563958. 

with 

4. P R O P O S E D  A L G O R I T H M  

(13) The acceptance rate for the "opt imized cosh"  method is 
high, but to obtain the parameter or(a) for a* -< a < a °, one 
has to solve a transcendent equation Eq. (9). Also, one has to 
use different formulae for 0 < a < a*, a* ~ a < a °, and a ° < 
a, which will cause " i f -branches"  that will lower the efficiency 
when using with vectorized processors. 

One may, for example, use the Newton method to solve (14) 
equations numerically, but here instead we approximate the 
function a(a)  in Eq. (9) directly by a function which is explicitly 
expressible on computer programs without using if-branches 
for all a and is designed to keep high acceptance rate. The if- 
branches are avoided in such a way that we have - 1  < / 3  < 1 
for all a E (0, oo). We give an example of  a practical algorithm: 

(16) 

1. Define or(a) by 

a2(a) = min{a(2 - e), 

max{ea, 0.4162(a - a*) 2 + 1.5056(a - a*)}}, 

G.(O) = 1 - c o s  0 -  1 l o g ( 1  + y(a)202). ( 1 7 )  
O 

The distribution is reduced to the Cauchy distribution: 

f~(O) = 1 + y202' A/r = 2 arc tan(try)" (18) 

See Appendix A for the proof that these formulae correctly 
generate a random U(1) variable, and arguments for our choice 
of  the parameters. 

The acceptance rate R = R(a) for the "opt imized cosh"  
method is given by 

where e = 1 0  -3 and a* is the value given below Eq. (1 I), and 
also define/3(a) by 

a max p(2 ) -  1 - 1, 

where 

coshOrV~)- 1 
Q ~ -  , e , = a * e ( 1  + e ) .  

2E: a 

2. Define functions h~.0 and g. by 

R(a) = N~ta},lJt~l a >-- a*, 
2Naexp(a)(1 + /3(a ) ) '  

y(a) 

2Noexp(a)arc tan(~y(a)) '  
a * > a > 0 ,  

where No and N~,~ are defined in Eq. (2) and Eq. (6), respectively. 
Note the high acceptance rate for both small a and large a: 

R(a) ~ l - l a  + l-~O a2, a , ~ l ,  

R(a)--~ 2 log(2 + V~)  ~ 0.95167365657, a ~ oo. 

tanh(c~h~,~(x)/2) = V'(1 +/3)/(1 - / 3 )  

tan ( ( 2 x - 1 ) a r c  tan (~¢ / (1- /3 ) / (1  + / 3 ) t a n h 2 )  ) 

and 

g~(x) = exp(a cos h~,l.~l(x) - a) 

1 - / 3 ( a )  tanh2 (°t(a) ) 1 + 1 ~/3(a) --T-hm.),a~.)(x) 

o4a) 1-tanh2(--ff-h~),O~a,(X)) 
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FIG.  1. Acceptance rate R(a). 

3. Let % and col with j = 1, 2, 3 . . . . .  be two sequences of 
independent random variables uniformly distributed in [0, 1). 
Define a subsequence 

6 J i = % ,  i =  1 ,2 ,3  ..... 

of  the sequence {%} by selecting the numbers j  = ji that satisfy 
~; <- g,,(o~j). 

The sequence ha~,~.t~,,)(~o~), h,~(al.ijla~(ffJ2), h~,la~.t~a)(ffJ3) . . . . .  is the 
random U(1) variable. 

We will refer to this choice as the "proposed cosh"  method. 
One can explicitly check that the conditions of  the Proposition 
in Appendix A, or the alternative conditions in the remark to 
the proposition, hold with this choice of  parameters, which 
implies that the "proposed cosh"  method correctly generates 
random U(1) variables. The acceptance rate R ( a )  is greater than 
0.9 for a --< 8.5, decreasing for larger a, and the infimum is 
attained at a = oo (Fig. 1). We have 

infR(a)  = R(oo) = ~ 0.8861530627. 
~>0 4 arc tanV'-~(2 - e) 

5. EFFICIENCY TEST AND CONCLUDING REMARKS 

The Bes t -Fisher ' s  method [1] uses the rejection method, 
where the approximate distributionfis the wrapped Cauchy dis- 
tribution: 

1 ~/1 + 4T(a) 2 
f ( O )  = 2n" 1 + 2T(a)2(l - cos 0)' 

T(a) 2 = 4-~( -1  + 2a + N/1 + 4a2). 

(We changed the parametrization from [1] to show correspon- 
dence with Eq. (18).) The acceptance rate R(a)  is 

1 ea  X/1 + 4y(a) 2 
R(a )  = ~ ~ , 

exp(a)N, 4try(a)- exp(-a/(2"y(a)-))  

where No is as in Eq. (2). In particular, R(oo) = ~ 
0.657744623. This method is faster than the "d i rec t"  method 
for a l l a  > 0 [ 1 ] .  

Before going into the comparison with our method, we would 
like to refer to two other methods in the recent literature, both 
of which are based on the rejection method, but use different 
approximate distributions f. 

The approximate distribution adopted in [9] is 

 exp(o(, 2,o,)) 
where A/, is a normalization constant. The acceptance rate R(a)  

for this choice is 
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R(a) = - -  
1 a e x p ( - c a )  

N, exp(a) zr(1 - e x p ( - 2 a ) ) '  

c = - arc sin + ~/1 - (2/rr)-' - 1, 
ff 

where N,, is as in Eq. (2). R(a) is high for a --< 1, but for 
large a, we have R(a) -~ ~ exp( -ca ) ,  which rapidly 
approaches 0 as a --~ oo. Therefore this choice suffers from 
the same problem as "direct"  method that the time necessary 
to generate a random number indefinitely increases as a 
oo. (In fact, we checked that the "proposed cosh"  method 
is faster for a > 3.) 

The approximate distribution adopted in the study of  [4] is 
the Gaussian distribution 

f( O) = 1Cl,, exp(-a(a)02),  

where a(a) = 27r -2 max (a, 4-~). (To be precise, the "di rec t"  
method is adopted for a < 1.5 and the Gaussian distribution 
for a > 1.5 in [4]. We focus our attention on a > 1.5, where 
the "direct"  method is not effective.) For the algorithm of 
generating the Gaussian random variable, [4] quotes [7]. The 
original distribution f,(O) is now considered as a distribution 
on 0 E R, withf~(0) = 0 if [0[ > zr. The acceptance rate R(a) 
is [41 

R(a) - 1 ~ .  
N,, exp(a) 

The acceptance rate for the Best-Fisher method is larger than 
this value for all a > 0. The method of  [4] is very efficient, 
but by comparing the actual speed in producing one random 
number, we found that the Best-Fisher method is 1.3 times 
faster than the method of  [4] for all a > 0. The long known 
Best-Fisher method is very efficient because it has relatively 
high efficiency with simple program. 

Let us now compare our method with the Best-Fisher 
method. As noted in the introduction, our interest is the effi- 
ciency when used on vector processors, and without "if-  
branches" (conditional jumps). In the rejection method, one 
usually repeats the acceptance trial until acceptance occurs 
where one obtains a random variable. This procedure causes 
"if-branches." 

In the Monte Carlo simulation of  statistical systems (where 
one performs multi-dimensional integration numerically) com- 
bined with the rejection method [10], one may make a fixed 
number n of rejection trials for each spin variable (each degree 
of  freedom) and go to next variable whether or not acceptance 
has occurred [5]. Let us call this set o fn  trials, an update. Trying 
an update with n trials effectively improves the acceptance rate 
R to R, = 1 - (1 - R)". One is then interested in the speed 
to keep R, above some fixed high value, say R, > 0.9. Note 

that in this approach "if-branches" are avoided. This approach 
has been widely adopted in Monte-Carlo simulations of  statisti- 
cal systems. 

Based on this approach, we performed efficiency test compar- 
ison of  the Best-Fisher and the "proposed-cosh" method, with 
HITACH $3800 in Computer Centre of  University of  Tokyo 
which uses a pipelined vector processor. We measured the 
efficiency by the average VPU (vector processing unit) time 
consumption for an update, with iteration number n so chosen 
that for given b, R,, > 0.9 in the range 1 < a < b. The average 
is taken over 4 x 106 updates. The measured acceptance rates 
for each a were in good agreement with the theoretical predic- 
tions in Section 3 and in Fig. 1 (within 0.1% accuracy). We 
found that for uniformly distributed a in the range 1 < a < 
8, the "proposed cosh"  method is 1.2 times faster than the 
Best-Fisher method. The acceptance rate for the "proposed 
cosh" method is very high, uniformly in a, which makes this 
method efficient. 

The consideration given in Section 3 implies that the use of  
the " c o s h "  distribution will be efficient for generating random 
variables taking values in a finite interval (e.g., [-zr,  7r]) and 
whose distribution f,(O) is an even function with maximum at 
0 = 0, and behaves likef,(0) -~ const - aO 2 near 0 = 0, with 
a parameter a > 0 that controls the sharpness of  the peak. 
This is a common feature of  weight functions for statistical 
mechanical systems with one component spins and link vari- 
ables. We have seen that the method is particularly suitable 
for vector processors, equipped with coprocessors for floating- 
point calculations. 

Note, however, that the speed of  an algorithm may depend 
on the situation, whether the parameter a is fixed or varying, 
range or value of  a, and what kind of  processor is used. For 
example, our method, as well as all the other methods discussed 
above, considers the case where a varies. For fixed a, there 
may be faster methods. 

APPENDIX A 

In this appendix, we give a proof that the "optimal cosh" 
method in Section 3 correctly gives the random U(1)-vari- 
ables, and also we give the argument for the choice of  the para- 
meters. 

We consider the case a > a*. The proof for the case 0 < 
a --< a* is similar. By explicit calculation, one sees that h~,~ of  
Eq. (7) satisfies Eq. (3). Therefore it suffices to show that Eq. 
(12) satisfies Eq. (4) with Eq. (5). Define, 

 y(o)io(oq 
G(O) = la log ]_f--~ ~-~-~ J (19) 

= 1 - c o s O - 1 1 o g ( 1 - - ~ ( c o s h ( a O ) + / 3 ) ) .  (20) 
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(G depends on three free parameters a, a,  and/3. We suppress 
the parameter dependences for the moment.) Then Eq. (4) and 
Eq. (5) imply 

g ( x ) = e x p { - a ( G ( h ( x ) ) -  0~t-~.~lmin G(0))} (21) 

D = D I  UD2, 

D~ ~ {(a, o~,/3) E (0, o~)-' X ( - 1 ,  oo) I a2(2 - / 3 )  

>/3 + 1 > o¢21a}, 

D2 =- {(a,a,/3) ~ (0, oo)2 × (_1 ,  ~ ) [ a  2 

= 3 a -  1 = a ( / 3 +  1 ) , a > 3 / 2 } .  

and 

37(0) e x p { a  min G(O)}. 
R(a) - N,, exp(a--~ 0El-~.~l 

Comparing Eq. (21) with Eq. (12), one sees that the results in 
Section 3 are correct if 

rain G(O) = 0. (22) 
eel-Tr,a'] 

PROPOSmON. Let a > O, a > O, and/3 > - 1. If G satisfies 
the three conditions 

1 O~ 2 
G"(0) = I - -  >- 0, (23) 

a l + / 3  

G~4'(0) = - 1  1 o?(/3 - 2) 
a  +737 _ o ,  

(cosh(zro0 +/3) __ o, 
G ( r r ) = 2 -  l o g \  1 + / 3  

then G satisfies 

G(x)>-O, -Tr<-x<-Tr. (26) 

Assume for the moment that this proposition is true. It is 
easy to see by explicit calculations that a = a(a)  and /3 = 
/3(a) defined by Eq. (8) or Eq. (9) satisfy the conditions (23), 
(24), and (25), and a(a)  > 0 and/3(a) > - 1 ,  for all a > a*. 
Since G(0) = 0, the proposition implies that Eq. (22) is satisfied 
for all a > a*. 

It remains to prove the proposition. Since G is an even 
function, it is sufficient to prove G(x) >- 0 for 0 -< x <- 7r. 

The conditions (23) and (24) imply that a2(2 - /3) ->/3 + 
1. The equality holds if and only if a(/3 + 1) = ot 2 and ot 2 = 
3a - 1, which, with (25) implies (3a - 1)(exp(2a) - 1) --> 
a(cosh(TrV~a - 1 ) -  1). This is equivalent to a > a ° (>za-), 
where a ° is defined by Eq. (10). Therefore, if we define a set 
D by 

it is sufficient to prove that for all (a, a,/3) ~ D and 0 -< x 
rr, (25) implies G(x) >- O. 

Step 1. Fix (a, a , /3)  E D. Put g(x) m G'(x). (This g has 
nothing to do with g in Eq. (21).) Then we have 

f (x)  =-- g(x) + g"(x) 

c~ 5 sinh(~_~) 
a(/3 + cosh(oa')) ~ 

h(a-2(cosh(ocO - 1)), 
(27) 

where 

h(y) =- _y2 + (/3 _ 2a  2(/3 + 1))3' + a-4(/3 + 1) 

(a-'(2 - / 3 )  - (/3 + 1)). 

Since (a, a, /3) E D, we see that there exists one and only one 
(24) positive root 3' = 3'0 o f h ( y )  = 0 and that h(y) > 0, i f 0  < 

Y < Y0, and h(y) < 0, if3' > yo. Therefore if we let x = xo to 
be the unique positive solution to the equation o~-2(cosh(oc~ ) - 

(25) 1) = Y0, we have 

f ( x ) > 0 ,  i f 0 < x < x 0 ,  (28) 

f (x)  < 0, ifx > xo. (29) 

Note that g(0) = 0 and g'(0) -> 0 if (a, a,  /3) E D. With 
Eq. (27) and Eq. (28) we conclude that 

g(x) > 0, i f0  <x- -<xo ;0  < x  < lr. (30) 

(The conclusion may be easily understood if one notes that Eq. 
(27) is an equation of  motion of harmonic oscillation with 
external force f )  

Equations (27), (29), (30) imply 

G ' ( x ) = g ( x ) > O ,  i f O < x < - x o ; O < x < r r .  (31) 

g(x) + g"(x) < 0, ifx > xo. (32) 
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Step 2. Fix oe > 0 and t ~- aot-2(/3 + 1) --> 1, and let a 
vary with the restriction (a, or,/3) E D. The allowed region of  
a differs by the values of t and a:  

1. t > 1, or t = I and ce -< 7X/'~. In this case, (a, a , /3 )  
D is equivalent to a > (or 2 + 1)/3. 

2. t = 1 and a > 7 V ' ~ .  In this case, (a, ol, /3) E D is 
equivalent to a -> (oe-' + 1)/3. 

Note that g(x) = go(x) is continuous (uniformly continuous 
on compact sets in (0, rr] w.r.t, x) and increasing in a, and x0 
= xo(a) is continuous in a. Also, lim,_~ g(x) = sin x, uniformly 
on compact sets in (0, rr]. 

We claim that for every a (such that (a, a , /3 )  E D), and for 
any x, and x3 satisfying g°(x,) > 0, g.(x3) > 0, and 0 < x, < 
x3 --< ~', we have g.(x) > O, x E [x, x3]. Assume this is wrong; 
assume that for a = ao and 0 < x~ < x2 < x3 --< 7r we have 
g.o(XO > M, g.,(x2) --< 0, and g%(x3) > M, where M is a positive 
constant. Since g.(x) is increasing in a, we have 

g~(xl) > M, ga(x3) > M, a --> a0. 

Put 

q(a) =- min gJx). 
.r i ---.t ~ .~  3 

Then q(a) is continuous in a and l im, ,~  q(a) > 0. Therefore 
there exists a, -> a0 such that q(a~) = O, which further implies 
that g.,(x) >-- 0, x, <- x --< x3, and that there exists x4 satisfying 
x, < x4 < x3 and g.,(x4) = 0. In particular, g,,(x4) = 0 and 
g',(x4) -> 0 hold, which contradicts Eq. (31 ) and Eq. (32). Hence 
the claim is proved. 

Step 3. Fix (a, a , / 3 )  E D. The claim and Eq. (31) imply 
that either g(x) = G'(x) > 0 for 0 < x < rr, or there exists x '  
such that 0 < x'  < rr, and g(x) > 0 for 0 < x < x ' ,  and 
g(x) < 0 for x '  < x ----- ~'. Hence G(x) is either increasing in 
0 < x < rr or has just one peak and no valley. Since G(0) = 
0 and G@') -> 0, we have G(x) > 0, 0 < x < rr. This completes 
the proof. 

Remark. It is easy to see that the above proof  holds also 
if the conditions (23) and (24) are replaced by G"(0) > 0 and 

/3<0. 

We now turn to the argument for the choice of  the parameters. 
We want to choose the parameters so that the acceptance rate 
is large. As stated at the end of  Section 2, we want a fiat g(x); 
hence we require G"(0) --- 0. We impose the condition that the 
minimum of R(a) is achieved at 0 = 0, which is equivalent to 
assuming Eq. (26). As a necessary condition, we have G(4)(0) 

--> 0 and G(rr) -> 0. (By the proposition, we know that these 
are sufficient to ensure Eq. (26).) As we want to have flat G(x), 
it should be best to have either Gt4)(0) = 0 or  G(Tr) - 0. If  
one draws a graph of  these three conditions, in (or,/3)-plane, 

one easily sees that the choice given in the Section 3 is the 
one that we are looking for. 

APPENDIX B 

SUBROUTINE UIRND(A,H) 
C A sample FORTRAN program for generating a random U(1) variable 

C using the proposed cosh method. 
C The first argument A is the parameger in the distribution. 
C The second argument N returns a random U(1) variable when 
C UIRND is called. A uniform [0,I) source (random variable) RND 

C is assumed and called twice. 
REAL A,AS,ALPH2A,ALPHA,B1,EPS,G,H,N1,P1,P2,PI,QB 
PARAMETER (PI=SNGL(3.14159265358979323846)) 

PARAMETER (AS=SNGL(O.79895368608398)) 
PARAMETER (PI=0.4162, P2=l.fi086) 
PARAMETER (EPS=O.O01) 

C Correspondence of variables with the texg (see Secgion 4): 
C AS=a*, Pl=pl, P2=p2, EPS=epsilon, 
C ALPH2A=alpha**2/a, Bl=sqrg((l-bega)/(1+beta)), ALPHA=alpha, 
C Hl=ganh(h(omega)*alpha/2), H=h(omega)=random U(1) variable, 
C G=g_a(omega), RND=omega and omega'. 
C QB is a consgant which should actually be calculated at 
C the beginning of ghe program, not in the subroutine. 
C COSH, SQRT, EXP, MIN, MAX, ATAN, TANH, TAN, LOG, COS are 
C sgandard intrinsic funcg±ons. 
C (The program used go test the efficiency in Section 5 is 
C slightly involved than this sample program, to make it 
C efficient for vector processors.) 

QB=(COSN(SQRT(AS*(I+EPS)*EPS)*PI)-IdO)/AS/(I+EPS)/EPS/2 
ALPH2A=MIM(2-EPS, MAX(EPS, (PI*(A-AS)+P2)*(A-AS)/A)) 
BI=SQRT(MIM(2, (EXP(2*A)-I)/A/QB)/ALPN2A-I) 
ALPHA=SQRT(ALPH2A*A) 

1 CONTINUE 
BI=TAM((2*RMD-1)*ATAN(TANB(PI*ALPNA/2)*B1))/BI 
B=LOG((I+H1)/(1-HI))/ALPHA 
G=EXP(A*(COS(H)-I))*(I+(BI*HI)**2)/(I-HI**2) 
IF (G .LT. RND) GOTO 1 
RETURN 
END 
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